1

Benjamin Naecker <u>bnaecker@stanford.edu</u> 23 June 2015

$\approx \frac{1}{2}$ second

How does this happen?

• The retina

- The retina
- Primary visual cortex

- The retina
- Primary visual cortex
- Higher visual cortices

- The retina
- Primary visual cortex
- Higher visual cortices
- Current research in visual neuroscience

Outer nuclear layer

What does the retina do?

11

Lateral inhibition

Signals differences in light

Bipolar response

Bipolar response

Signal differences in light
-Signal differences in light-

-Signal differences in light

Edge detectors!

Bipolar response

Bipolar response

STIMULUS

http://ruccs.rutgers.edu/~ikovacs/SandP2000/ prepl_3_1.html

Center-surround receptive fields

Sum over space

Signal differences in light

-Signal differences in light

-Signal differences in light

Edge detectors

- Signal differences in light

Edge detectors

-Signal differences in light

Edge detectors

Oriented edge detectors

What to do with all that information?

25

What to do with all that information?

What to do with all that information?

What to do with all that information?

Area MT

Large visual fields

- Large visual fields
- Responds to moving objects

Inferior temporal cortex

Large visual fields

- Large visual fields
- Responds to complex visual objects

- Large visual fields
- Responds to complex visual objects

- Large visual fields
- Responds to complex visual objects

Retina

<u>Retina</u>

Center-surround fields

<u>Retina</u>

- Center-surround fields
- Contrast in space and time

<u>Retina</u>

- Center-surround fields
- Contrast in space and time

<u>Retina</u>

<u>V1</u>

- Center-surround fields
- Contrast in space and time

<u>Retina</u>

- Center-surround fields
- Contrast in space and time

<u>V1</u>

Simple visual features

<u>Retina</u>

- Center-surround fields
- Contrast in space and time

<u>V1</u>

- Simple visual features
- Orientation tuning

<u>Retina</u>

- Center-surround fields
- Contrast in space and time

<u>V1</u>

- Simple visual features
- Orientation tuning

<u>Retina</u>

- Center-surround fields
- Contrast in space and time

<u>V1</u>

- Simple visual features
- Orientation tuning

Higher visual areas

<u>Retina</u>

- Center-surround fields
- Contrast in space and time

<u>V1</u>

- Simple visual features
- Orientation tuning

Higher visual areas

• MT: motion tuning

<u>Retina</u>

- Center-surround fields
- Contrast in space and time

<u>V1</u>

- Simple visual features
- Orientation tuning

Higher visual areas

- MT: motion tuning
- IT: complex objects

<u>Retina</u>

- Center-surround fields
- Contrast in space and time

<u>V1</u>

- Simple visual features
- Orientation tuning

Higher visual areas

- MT: motion tuning
- IT: complex objects

An 'algorithm' for the visual system

An 'algorithm' for the visual system

 Break visual world into simple, easy-to-represent pieces

An 'algorithm' for the visual system

- Break visual world into simple, easy-to-represent pieces
- Build up selectivity to relevant features from these pieces

An 'algorithm' for the visual system

- Break visual world into simple, easy-to-represent pieces
- Build up selectivity to relevant features from these pieces

edge here
Building complex from simple

An 'algorithm' for the visual system

- Break visual world into simple, easy-to-represent pieces
- Build up selectivity to relevant features from these pieces

edge here + color here

Building complex from simple

An 'algorithm' for the visual system

- Break visual world into simple, easy-to-represent pieces
- Build up selectivity to relevant features from these pieces

edge here + color here + motion there + ...

Building complex from simple

An 'algorithm' for the visual system

- Break visual world into simple, easy-to-represent pieces
- Build up selectivity to relevant features from these pieces

edge here + color here + motion there + ... = **TIGER!**

What does the visual system do?

Represent the visual world

Represent the visual world "Guess" what's out there!

'Infer' something about the world

- 'Infer' something about the world
- Should take into account past experiences

Illusory contours

Illusory contours

https://en.wikipedia.org/wiki/Illusory_contours

Objects perceived as moving more slowly than they are

But things move slowly!

Certain ganglion cells 'remember' an object's location

Looking forward

Looking forward

It is possible that we've dramatically underestimated the complexity of the visual system

An introduction to the visual system

Thank you!

Benjamin Naecker bnaecker@stanford.edu